

FX ${ }_{2 N}$-4AD-PT SPECIAL FUNCTION BLOCK USER'S GUIDE

## JY992D65601A

This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX2N-4AD-PT special function block and should be read and understood before attempting to install or use the unit.
Further information can be found in the FX PROGRAMMING MANUAL and FX2N SERIES HARDWARE MANUAL.

## INTRODUCTION

- The FX2N-4AD-PT analog block amplifies the input from four platinum temperature sensors (PT 100, 3 wire, $100 \Omega$ ) and converts the data into 12 bit reading's stored in the Main Processing Unit (MPU). Both Centigrade $\left({ }^{\circ} \mathrm{C}\right)$ and Fahrenheit ( ${ }^{\circ} \mathrm{F}$ ) can be read. Reading resolution is $0.2^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C} / 0.36^{\circ} \mathrm{F}$ to $0.54^{\circ} \mathrm{F}$.
- All data transfers and parameter setups are adjusted through software control of the FX2N-4AD-PT ; by use of the TO/FROM applied instructions in the FX2N PC.
- The FX ${ }_{2 N}-4 A D-P T$ occupies 8 points of I/O on the $F_{2 N}$ expansion bus. The 8 points can be allocated from either inputs or outputs. The FX2n-4AD-PT draws 30 mA from the 5 V rail of the MPU or powered extension unit.
1.1 EXTERNAL DIMENSIONS

Weight : Approx. 0.3 kg ( 0.66 lbs ) Dimensions : mm (inches)


2

## TERMINAL LAYOUTS


(1) The cable of the PT 100 sensor or a twisted shielded cable should be used for the analog input cable. This analog input cable should be wired separately from power lines or any other lines which may induce noise. The three wire method improves the accuracy of the sensors by compensating voltage drops.
(2) If there is electrical noise, connect the frame ground terminal (FG) with the ground terminal.
(3) Connect the ground terminal on the FX2N-4AD-PT unit with the grounded terminal on the base unit. Use class 3 grounding on the base unit, if grounding is possible.
(4) Either an external or the 24 V built-in supply in the programmable controller may be used.

### 2.1 Using crimp terminations



- Use crimp terminations of the type indicated on the left.
- Secure the termination using a tightening torque of between 5 and 8 $\mathrm{kg} \cdot \mathrm{cm}$.
- Wire only to the module terminals discussed in this manual. Leave all others vacant


## INSTALLATION NOTES AND USAGE

### 3.1 Environmental specification

| Item | Specification |
| :--- | :--- |
| Environmental specifications (excluding following) | Same as those for the FX2N base unit |
| Dielectric withstand voltage | $500 \mathrm{~V} \mathrm{AC}, 1$ min (between all terminals and ground) |

3.2 Power supply specification

| Item | Specification |
| :---: | :---: |
| Analog circuits | $24 \mathrm{~V} \mathrm{DC} \pm 10 \%, 50 \mathrm{~mA}$ |
| Digital circuits | $5 \mathrm{VDC}, 30 \mathrm{~mA}$ |

3.3 Performance specification

## Analog Inputs

| Item | Centigrade | Fahrenheit |
| :---: | :---: | :---: |
|  | Both ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ readings are available by reading the appropriate buffer memory area. |  |
| Analog input signal | Platinum temperature PT 100 sensors ( $100 \Omega$ ), 3-wire, 4-channel (CH1, CH2, CH3, CH4), 3850 PPM $/{ }^{\circ} \mathrm{C}$ (DIN 43760, JIS C1604-1989) |  |
| Current to sensor | 1 mA . sensor : $100 \Omega$ PT 100 |  |
| Compensated range | $-100^{\circ} \mathrm{C}$ to $+600^{\circ} \mathrm{C}$ | $-148^{\circ} \mathrm{F}$ to $+1112^{\circ} \mathrm{F}$ |
| Digital output | -1000 to 6000 | -1480 to +11120 |
|  | 12-bit conversion 11 data bits +1 sign bit |  |
| Minimum resolvable temp. | $0.2{ }^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C}$ | $0.36{ }^{\circ} \mathrm{F}$ to $0.54{ }^{\circ} \mathrm{F}$ |
| Overall accuracy | $\pm 1 \%$ full scale (compensated range) -see section 7.0 for special EMC considerations |  |
| Conversion speed | 15 ms for 4 channels |  |

Analog Inputs continued...
Conversion
characteristics

## Miscellaneous

| Item | Specification |
| :---: | :---: |
| Isolation | Photo-coupler isolation between analog and digital circuits. <br> DC/DC converter isolation of power from FX2N MPU. <br> No isolation between analog channels. |
| Number of occupied I/O points | 8 points taken from the FX2N expansion bus <br> (can be either inputs or outputs) |

### 3.4 Buffer memory assignment

| BFM | CONTENTS |
| :---: | :--- |
| ${ }^{*} \# 1-\# 4$ | CH 1 to CH 4 Averaged temperature reading to be <br> averaged (1 to 4,096) Default $=8$ |
| \#5-\#8 | CH 1 to CH 4 Averaged temprature in $0.1^{\circ} \mathrm{C}$ units |
| $\# 9-\# 12$ | CH 1 to CH 4 Present temprature in $0.1^{\circ} \mathrm{C}$ units |
| $\# 13-\# 16$ | CH 1 to CH 4 Averaged temprature in $0.1^{\circ} \mathrm{Funits}$ |
| $\# 17-\# 20$ | CH 1 to CH 4 Present temprature in $0.1^{\circ} \mathrm{F}$ units |
| \#21-\#27 | Reserved |
| ${ }^{*} \# 28$ | Digital range error latch |
| \#29 | Error status |
| \#30 | Identification code K2040 |
| \#31 | Reserved |

The FX2n-4AD-PT communicates with the programmable controller through use of buffer memories.
BFMs (buffer memories) \#21 to \#27 and \#31 are reserved.
All BFMs data can be read by the programmable controller using the FROM command.
BFMs marked with an "*" can be written to from the programmable controller using the TO command.
(1) The number of samples to be averaged are assigned in BFMs \#1 to \#4. Only the range 1 to 4096 is valid. Values outside this range are ignored. The default value of 8 is used.
(2) A number of recently converted readings are averaged to give a smoother read out. The averaged data is stored in BFMs \#5 to \#8 and \#13 to \#16.
(3) BFMs \#9 to \#12 and \#17 to \#20 store the current value of the input data. This value is in units of $0.1^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$, but the resolution is only $0.2^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C}$ or $0.36^{\circ} \mathrm{F}$ to $0.54^{\circ} \mathrm{F}$.

### 3.5 Status Information

(1) Buffer Memory BFM \#28: Digital range error latch

BFM \#29 b10(digital range error) is used to judge whether the measured temperature is within the unit's range or not. BFM \#28 latches the error status of each channel and can be used to check for thermocouple disconnection.

| b15 or b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not used | High | Low | High | Low | High | Low | High | Low |
|  | CH4 |  | CH3 |  | CH2 |  | CH1 |  |

Low : Latches ON when temperature measurement data goes below the lowest temperature measurement limit

High : Turns ON when temperature measurement data goes above the highest temperature measurement limit, or when a thermocouple is disconnected.

When an error occurs the temperature data before the error is latched. If the measured value returns to within valid limits the temperature data returns to normal operation. (Note: The error remains latched in (BFM \#28))
An error can be cleared by writing K0 to BFM \#28 using the TO instruction or turning off the power.
(2) Buffer Memory BFM \#29: Error status

| Bit devices of BFM \#29 | ON |  |
| :--- | :--- | :--- |
| b0 : Error | When any of b1 to b3 is ON <br> A/D conversion is stopped for the <br> error channel | No error |
| b1 : Reserved | Reserved | Reserved |
| b2 : Power source | 24VDC power supply failure | Power supply normal |
| b3 : Hardware error | A/D converter or other hardware <br> failure | Hardware Normal |
| b4 to b9 : Reserved | Reserved | Reserved |
| b10 : Digital range error | Digital output/analog input value is <br> outside the specified range. | Digital output value is normal. |
| b11 Averaging error | Selected number of averaged results <br> is outside the available range. <br> -see BFM \#1 to \#4 | Averaging is normal. <br> (between 1 to 4096) |
| b12 to b15 : Reserved | Reserved | Reserved |

(3) Identification Code Buffer Memory BFM \#30

The identification code or ID number for a Special Block is read from buffer memory BFM \#30 using the FROM command

This number for the FX2N-4AD-PT unit is K2040.
The programmable controller can use this facility in its program to identify the special block before commencing data transfer from and to the special block.


## EXAMPLE PROGRAM

In the program shown below, the FX2N-4AD-PT block occupies the position of special block number 2 ( that is the third closest block to the programmable controller). The averaging amount is four. The averaged values in degrees C of input channels CH 1 to CH 4 are stored respectively in data registers D0 to D3.


This initial step checks that the special function block placed at position 2 is actually an FX2N-4AD-PT, i.e. its unit identification number is 2040 (BFM \#30). This step is optional, but it provides a software check that the system has been configured correctly.


Block No. 2 BFM \#29 $\rightarrow$ (K4M10)
Transfer the error status to (M25 to M10).
When error is found, M10 = ON.
Represents b0 BFM \#29

This step provides optional monitoring of the FX2N-4AD-PT Error Buffer Memory (\#29). If there is an Error ont the FX2N-4AD-PT, bit b0 of BFM \#29 will be set on This can be read by this program step, and output as a bit device in the FX2N programmable controller (M3 in this example). Additional Error devices can be output in a similar manner, i.e. b10 BFM \#29. (see below)

(K4) $\rightarrow$ (BFM \#1 to \#4)
Number of samples is changed four on CH 1 to CH 4 .
(BFM \#5 to \#8) $\rightarrow$ (D0 to D3)
Transfer the averaged temperature value in ${ }^{\circ} \mathrm{C}$ to the data registers.

This step is the actual reading of the FX2n-4AD-PT input channels. It is essentially the only program step which is needed. The "TO" instruction in this example, sets the input channels, CH 1 to CH 4 , to take the average reading of four samples. The "FROM" instruction reads the average temperatures (BFM \#5 to \#8) for input channels CH 1 to CH 4 of the $\mathrm{FX}_{2 \mathrm{~N}}$-4AD-PT. If direct temperature readings are required BFM \#9 to \#12 should be read instead, ex.
$\left[\begin{array}{ccccc}\text { FNC78 } & \text { K2 } & \text { K9 } & \text { D0 } & \text { K4 } \\ \text { FROM } & \begin{array}{c}\text { Kpecial } \\ \text { block No.2 }\end{array} & \begin{array}{l}\text { FX2N-4AD-PT } \\ \text { BFM number }\end{array} & \begin{array}{l}\text { result } \\ \text { destination }\end{array} & \begin{array}{l}\text { No. of } \\ \text { words read }\end{array}\end{array}\right]$

### 6.1 Preliminary checks

I. Check whether the input/output wiring and/or extension cables are properly connected on FX2N-4AD-PT analog special function block
II. Check that the FX2N system configuration rules have not been broken, i.e. the number of special function blocks does not exceed 8 and the total system I/O is equal or less than 256 , I/O.
III. Ensure that the correct operating range has been selected for the application.
IV. Check that there is no power overload on either the 5 V or 24 V power sources, remember the loading on an MPU or a powered extension unit varies according to the number of extension blocks or special function blocks connected.
V. Put the Main Processing Unit (MPU) into RUN.

### 6.2 Error checking

If the FX2n-4AD-PT special function blcok does not seem to operate normally, check the following items.

- Check the status of the POWER LED.

Lit : The extension cable is properly connected.
Otherwise : Check the connection of the extension cable.

- Check the external wiring.
- Check the status fo the " 24 V " LED (top right corner of the FX2N-4AD-PT). Lit : FX2n-4AD-PT is ON, 24V DC power source is ON. Otherwise : Possible 24VDC power failure, if ON possible FX2N-4AD-PT failure.
- Check the status fo the "A/D" LED (top right corner of the FX2n-4AD-PT). Lit
: A/D conversion is proceeding normally.
Otherwise : Check buffer memory \#29 (error status). If any bits ( $\mathrm{b} 0, \mathrm{~b} 2, \mathrm{~b} 3$ ) are ON , then this is why the A/D LED is OFF.


### 6.3 Checking special function block numbers

Other special units of blocks that use FROM/TO commands, such as analog input blocks, analog output blocks and high-speed counter blocks, can be directly connected to the base unit of the FX2n programmable controller or to the right side of other extension blocks or units. Each special block is consecutively numbered from 0 to 7 beginning from the one closest to the base unit. A maximum of eight special blocks can be connected.


## EMC CONSIDERATIONS

Electromagnetic compatibility or EMC must be considered before using the FX2N-4AD-PT.
Mitsubishi recommend that the PT 100 sensors used, should be fitted with a form of seild or screening as protection against EMC noise.
If some form of cable protection is used, the "Shield" must be terminated at the $\mathrm{FG} \stackrel{\perp}{\overline{ }}$ terminals as shown in section 2.0.
Because of the delicate nature of all analog signals, failure to take good EMC precautions could lead to EMC noise induced errors ; up to $\pm 10 \%$ of actual values. This is an absolute worst case figure, users who do take good precautions can expect operation within normal tolerances.
EMC considerations should include selection of good quality cables, good routing of those cables away from potential noise sources.
Additionally it is recommended that signal averaging is used as this will reduce the effects of random noise "spikes".

## Guidelines for the safety of the user and protection of the FX ${ }_{2 N}$-4AD-PT

- This manual has been written to be used by trained and competent personnel. This is defined by the European directives for machinery, low voltage and EMC
- If in doubt at any stage during the installation of the FX2N-4AD-PT always consult a professiona electrical engineer who is qualified and trained to the local and national standards. If in doubt about the operation or use of the FX2N-4AD-PT please consult the nearest Mitsubishi Electric distributor.
- Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.
- All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.


HEAD OFFICE:MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100 TELEX:J24532 CABLE MELCO TOKYO

$\boldsymbol{E X}_{2 \mathrm{~N}}$
This manual contains text, diagrams and explanations which will guide the reader in the correct installation and
operation of the FX2N-4AD-PT special function block and should be read and understood beeiore attempting to install of
use the unit. use the unit.
Further information can be found in the FX PROGRAMMING MANUAL and FXZN SERIIES HARDWARE MANUAL.

## 0

## INTRODUCTION

- The FX2N-AAD-PT analog block amplifies the input from four platinum temperature sensors (PT 100, 3 wire, $100 \Omega$ ) and converts the data into 12 bit reading's stored in the Main Processing Unit (MPU).
Fahrenheit ( ${ }^{\circ}$ ) can be read. Reading resolution is $0.2^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C} / 0.36^{\circ} \mathrm{F}$ to $0.544^{\circ}$.
- All data transfers and parameter setups are adiusted through software control of the FX2v-4AD-PT ; by use of the
TO/FROM applied instructions in the FX2N PC.

TO/FROM applied instructions in the FX2N PC.

- The FX 2 N-4AD-PT occuries 8 points of / /OO on the FX22vexpansion bus. The 8 points can be allocated from either in
puts or outputs. The $\mathrm{FX} 2 \mathrm{~N}-4 \mathrm{AD}$-PT draws 30 mA from the 5 V rail of the MPU or orwered extension unit.


### 1.1 EXTERNAL DIMENSIONS



2

| 24 | TERMINAL LAYOUTS |
| :--- | :--- | :--- | :--- |

## FX ${ }_{2 N}$-4AD-PT SPECIAL FUNCTION BLOCK

 USER'S GUIDE $\underbrace{\text { Loss han }}_{0} 6$

- Use crimp terminations of the type indicated on the le
- Secure the termination using a tightening torque of between 5 and 8 kg.cm
Wire ooly to the module terminals discussed in this manual. Leave
all others vacant.

| INSTALLATION NOTES AND USAGE |  |
| :---: | :---: |
| 3.1 Environmental specification |  |
| Item | Specification |
| Environmental specifications (excluding following) | Same as those for the FX2N base unit |
| Dielectric withstand voltage | $500 \mathrm{VAC}, 1$ min (between all terminals and ground) |
| 3.2 Power supply specification |  |
| Item | Specification |
| Analog circuits | 24 V DC $\pm 10 \%$, 50 mA |
| Digital circuits | $\quad 5 \mathrm{~V}$ DC, 30 mA (internal power supply from base unit |


| 3.3 Performance specification |  |  |
| :---: | :---: | :---: |
| Analog Inputs |  |  |
| Item | Centigrade | Fahrenheit |
|  | Both ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ readings are available by reading the appropriate buffer memory area. |  |
| Analog input signal | Platinum temperature PT 100 sensors (100 $\Omega$ ), 3-wire, 4-channel (CH1, CH 2 , CH3, CH4), 3850 PPM $/{ }^{\circ} \mathrm{C}$ (DIN 43760, JIS C1604-1989) |  |
| Current to sensor | 1 mA . sensor : $100 \Omega$ PT 100 |  |
| Compensated range | $-100^{\circ} \mathrm{C}$ to $+600^{\circ} \mathrm{C}$ | $-148^{\circ} \mathrm{F}$ to $+1112^{\circ} \mathrm{F}$ |
| Digital output | -1000 to 6000 | -1480 to +11120 |
|  | 12-bit conversion 11 data bits +1 sign bit |  |
| Minimum resolvable temp. | $0.22^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C}$ | $0.36^{\circ} \mathrm{F}$ to $0.54^{\circ} \mathrm{F}$ |
| Overall accuracy | $\pm 1 \%$ full scale (compensated range) -see section 7.0 for special EMC considerations |  |
| Conversion speed | 15 ms for 4 channels |  |
| Analog Inputs continued... |  |  |
| Conversion characteristics |  |  |


3.4 Buffer memory assignment
\#17-\#20 CH 1 to CH 4 Present temprature in $0.1^{\circ} \mathrm{F}$ units
\#21-\#27 Reserved

The $\operatorname{EX2N-4AD-PT}$ communicates with the
programmable controller through use of buffer memories.
BFMs (buffer memories) \#21 to \#27 and \#31 are
reserved. All BFM data can be read by the programmable
controller using the FROM command. ontroler using the FROM command. BFMs marked with an "uts can be witten to from the
programmable controller using the $T$ O command.
$\begin{array}{ll}\text { **28 } & \text { Digital range }\end{array}$
(2) A number of recently converted readings are averaged to give a smoother read out. The averaged data is stored
in BFMs $\# 5$ to $\# 8$ and $\# 13$ to $\# 16$.
(3) SFMs $\#$ to $\# 12$ and $\# 17$ to $\# 20$ store the current value of the input data. This value is in units of $0.1^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$, (3) BFN $\$ 9$ to $\# 12$ and $\# 1710 \# \# 20$ store the current value of the
but the esolution is only $0.2^{\circ} \mathrm{C}$ to $0.3^{\circ} \mathrm{C}$ or $0.36^{\circ} \mathrm{F}$ to $0.544^{\circ} \mathrm{F}$.
3.5 Status Information
(1) Buffer Memory BFM \#28: Digital range error latch

BFM \#29 b10(digital range error) is used to judge whether the measured temperature is within the unit's range or not.
BFM \#28 latches the error status of each channel and can be used to check for thermocouple disconnection.

| b15 or b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not used | High | Low | High | Low | High | Low | High | Low |
|  | CH4 |  | CH3 |  | CH2 |  | CH1 |  |

Low : Latches ON when temperature measurement data goes below the lows
High : Turns ON when temperature measurement data goes above the highest temperature
When an error occurs the temperature data before the error is latched. If the measured value returns to within valid
limits the temperature data returns to normal operation. (Note: The error remains latched in (BFM \#28)) limits the emperature data returns to normal operation. (Note: The error remains latched in (bFM $\#$.
An error can be cleared by writing KO to $\mathrm{BFM} ~ \# 28$ using the TO instruction or turning off the power.
\#29 Error status
\#30 Identification code K2040
\#31 Reserved
(1) The number of samples to be averaged are assigned in BFMs $\# 1$ to $\# 4$. Only the range 1 to 4096 is valid. Values
outside this range are ignored. The default value of 8 is used.

| Bit devices of BFM \#29 | ON | OFF |
| :---: | :---: | :---: |
| b0: Error | When any of b1 to b3 is ON A/D conversion is stopped for the error channel | No error |
| b1: Reserved | Reserved | Reserved |
| b2 : Power source | 24VDC power supply failure | Power supply normal |
| b3: Hardware error | A/D converter or other hardware failure | Hardware Normal |
| b4 to b9 : Reserved | Reserved | Reserved |
| b10 : Digital range error | Digital output/analog input value is outside the specified range. | Digital output value is normal. |
| b11 Averaging error | Selected number of averaged results is outside the available range. -see BFM \#1 to \#4 | Averaging is normal. (between 1 to 4096) |

(3) Identification Code Buffer Memory BFM \#30

The identification code or ID number for a Special Block is read from buffer memory BFM \#30 using the FROM This number for the FX2N-4AD-PT unit is K2040.
The programmable controller can use this facility in its program to identify the special block before commencing data transter from and to the special lock.

SYSTEM BLOCK DIAGRAM


## EXAMPLE PROGRAM

In the program shown below, the FXXV-4AD-PT block occupies the position of special block number 2 ( that is the third







## 6

1. Check whether the inputfoutput wiring and/or extension cables are properly connected on $\mathrm{FX} 2 \mathrm{~N}-4 \mathrm{AD}-\mathrm{PT}$ analog
2. Check that the FXXN system configiguraion rules have not been broken, i.e. the number of special function blocks
does not exceed 8 and
II. Check that the $F X_{2 N}$ System configuration rules have not been broken, ie. the
does not exceed 8 and the total system $/ / 0$ is equal or less than 256, ilo.
III. Ensure that the correct operating range has been selected for the application.
IV. Check that there is no power overload on either the 5 V or 24 V power sources, remember the loading on an MPU o
a powered extension unit varies according to the number of extension blocks or special function blocks connected.
V. Put the Main Processing Unit (MPU) into RUN.

### 6.2 Error checking

If the FX2v-4AD-PT special function blook does not seem to operate normally, check the following items.

- Check the status of the POWER LED.

- Check the external wiring.
- Check the status fo the "24V" LED (top right corner of the FX2N-4AD-PT)
$\begin{array}{ll}\text { Lit } & \begin{array}{l}\text { FX2N-AAD-PT is ON, } 24 \mathrm{~V} \text { DC power source is ON. } \\ \text { Otherwise } \\ \text { Possible } 24 V D C ~ p o w e r ~ f a i l u r e, ~ i f ~\end{array} \text { N possible } \\ \text { FX2N-4AD-PT failure. }\end{array}$
- Check the status fo the "AD" LED (top right correr of the $\mathrm{FX} 2 \mathrm{~N}-4 \mathrm{AD}-\mathrm{PT}$ ).

Lit
Otherwise
O.
: Check butfer memory \#neading normally.
the AD LED is OFF.

### 6.3 Checking special function block numbers

Other special units of blocks that use FROMTO commands, such as analog input blocks, analog output blocks and
high-speed counter blocks, can be directly connected to the base unit of the $F X 2$ PNogrammable controller or to the high-speed counter blocks, can be directly connected to the base unit of the FXXN programmable controller or to the
right side of othe extension blocks or units. Each speid block is consecutively nubered from 0 to 7 beginning from
the one closest to the base unit. A maximum of e eight special loccks can be connected.


## 7

## EMC CONSIDERATIONS

Electromagnetic compatibility or EMC must be considered before using the FX2N-AAD-PT.
Mitssubishi recommend that the PT 100 sensors used, should be fitted with a form of seild or screening as protection
against EMC noise.
If some form of cable protection is used, the "Shield" must be terminated at the $F \mathbb{F G}$ terminals as shown in
section 2.0. section 2.0
Because of the delicate nature of all analog signals, failure to take good EMC precautions could lead to EMC noise
nduced errors ; U0 to diuced errors ; ;p to $\pm 10 \%$ of actual alalues. This is an absolute worst case figure, users who do take good
precautions can expect operation nithin normal tolerances.
EMC considerations should include selection of good quality cables, good routing of those cables away from potential noise sources.

## Guidelines for the safety of the user and protection of the FX2N-4AD-P

- This manual has been written to be used by trained and competent personnel. This is defined by
the European directives for machinery, low voltage and EMC.
- If in doubt at any stage during the installation of the FXXN-AAD-PT always consult a professiona
electrical engineer who is qualified and trained to the local and national standards. If in doubt about the operation or use of the FX2N-4AD-PT please consult the nearest Mitsubishi Electric distributor.
- Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential

Al examples and diagrams shown in this manual are intended only as an aid to understanding
the text. notto uarantee operation Misturishi Electic w will accept no responsibility for actual
use of the product based on these illustrative examples. The text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual

$\therefore$ MITSUBISHI ELECTRIC CORPORATION

