This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX2N-4AD and should be read and understood before attempting to install or use the unit. Further information can be found in the FX SERIES PROGRAMMING MANUAL, FX2N SERIES HARDWARE MANUAL .

INTRODUCTION

- The FX2N-4AD analog special function block has four input channels. The input channels receive analog signals and convert them into a digital value. This is called an A/D conversion. The FX2N-4AD has maximum resolution of 12 bits.
- The selection of voltage or current based input/output is by user wiring. Analog ranges of -10 to 10 V DC (resolution: 5 mV), and/or 4 to $20 \mathrm{~mA},-20$ to 20 mA (resolution: $20 \mu \mathrm{~A}$) may be selected.
- Data transfer between the FX2N-4AD and the FX2N main unit is by buffer memory exchange. There are 32 buffer memories (each of 16 bits) in the FX2n-4AD.
- The FX2N-4AD occupies 8 points of I/O on the FX2N expansion bus. The 8 points can be allocated from either inputs or outputs. The FX2n-4AD draws 30 mA from the 5 V rail of the FX 2 N main unit or powered extension unit.
1.1 EXTERNAL DIMENSIONS

2

TERMINAL LAYOUTS

(1) The analog input is received through a twisted pair shielded cable. This cable should be wired separately from power lines or any other lines which may induce electrical noise.
(2) If a voltage ripple occurs during input, or there is electrically induced noise on the external wiring, connect a smoothing capacitor of 0.1 to $0.47 \mu \mathrm{~F}, 25 \mathrm{~V}$.
(3) If you are using current input, connect the $\mathrm{V}+$ and $\mathrm{I}+$ terminals to each other.
(4) If there is excessive electrical noise, connect the FG frame ground terminal with the grounded terminal on the FX2n-4AD.
(5) Connect the ground terminal on the FX2n-4AD unit with the grounded terminal on the main unit. Use class 3 grounding on the main unit, if available.

3.1 Environment specification

Item	Specification
Environmental specifications (excluding following)	Same as those for the FX2N main unit
Dielectric withstand voltage	500VAC, 1min (between all terminals and ground)

3.2 Power supply specification

Item	Specification
Analog circuits	$24 \mathrm{VDC} \pm 10 \%, 55 \mathrm{~mA}$
Digital circuits	(external power supply from main unit)

3.3 Performance specification

Analog Inputs

Item	Voltage input	Current input
	Either voltage or current input can be selected with your choice of input terminal. Up to four input points can be used at one time.	
Analog input range	DC -10V to +10V (input resistance: 200k Ω). Warning: this unit may be damaged by input voltage in excess of $\pm 15 \mathrm{~V}$.	DC -20mA to +20mA (input resistance: 250Ω). Warning: this unit may be damaged by input currents in excess of $\pm 32 \mathrm{~mA}$.
Digital output	12 -bit conversion stored in 16-bit 2's complement form. Maximum value: +2047 Minimum value: -2048	
Resolution	5 mV (10V default range $1 / 2000$)	$20 \mu \mathrm{~A}$ (20mA default range $1 / 1000$)
Over all accuracy	$\pm 1 \%$ (for the range of -10 V to +10 V)	$\pm 1 \%$ (for the range of -20 mA to +20 mA)
Conversion speed	$15 \mathrm{~ms} /$ channel (Normal speed), $6 \mathrm{~ms} /$ channel (High speed)	

Analog Inputs continued...

Preset 0 (-10V to +10V)	Preset $1(+4 \mathrm{~mA}$ to $+20 \mathrm{~mA})$	Preset $2(-20 \mathrm{~mA}$ to $+\mathbf{2 0 m A})$

NOTE: Preset ranges are selected by an appropriate setting in buffer memory of the analog block. Current/Voltage input selection must match the correct input terminal connections.

Miscellaneous

Item	Specification
Isolation	Photo-coupler isolation between analog and digital circuits. DC/DC converter isolation of power from FX2N MPU. No isolation between analog channels.
Number of occupied I/O points	8 points taken from the FX2N expansion bus (can be either inputs or outputs)

3.4 Allocation of buffer memories (BFM)

BFM	Contents	
${ }^{* \# 0}$	Channel initialization Default = H0000	
${ }^{* \# 1}$	Channel 1	Contains the number of samples (1 to
${ }^{* \# 2}$	Channel 2	4096) to be used for an averaged result.
The default setting is 8-normal speed. High		
speed operation can be selected with a		

In buffer memory locations (BFMs) marked with an "*" data can be written from the PC using the TO command.

For buffer memories (BFMs) without "*" mark, data can be read to the PC using the FROM command

Before reading from the analog special function block, ensure these settings have been sent to the analog special function block. Otherwise, the previous values held in the analog block will be used.

BFM		b7	b6	b5	b4	b3	b2	b1	b0
\#16-\#19	Reserved								
*\#20	Reset to Defaults and Preset. Default =0								
*\#21	Offset, Gain Adjust Prohibit. \quad Default $=(0,1)$ Permit								
*\#22	Offset, Gain Adjust	G4	O4	G3	O 3	G2	O 2	G1	01
*\#23	Offset Value	Default = 0							
*\#24	Gain Value	Default $=5,000$							
\#25-\#28	Reserved								
\#29	Error status								
\#30	Identification code K2010								
\#31	Cannot be used								

The buffer memory also gives a facility to adjust offset and gain by software.

Offset (intercept): The analog input value when the digital output becomes 0 .

Gain (slope): The analog input value when the digital output becomes +1000 .

(1) Channel Selection

Channel initialization is made by a 4 character HEX number HOOOO in buffer memory BFM \#0.
The least significant character controls channel 1 and the 4 character controls channel 4
Setting of each character is as follows:
$O=0:$ Preset range $(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$
$O=1:$ Preset range $(+4 \mathrm{~mA}$ to $+20 \mathrm{~mA})$
$O=2$: Preset range $(-20 m A$ to $+20 m A)$

Example: H3310
CH 1 : Preset range $(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$
CH 2 : Preset range $(+4 \mathrm{~mA}$ to $+20 \mathrm{~mA})$
CH3, CH4: Channel OFF

(2) Analog to Digital Conversion Speed Change

By writing 0 or 1 into BFM \#15 of the FX2N-4AD, the speed at which A/D conversion is performed can be changed
However the following points should be noted:
To maintain a high speed conversion rate, use the FROM/TO commands as seldom as possible.
NOTES: When a conversion speed change is made, BFM \#1-\#4 are set to their default values immediately after the change. This is regardless of the values they held originally. Bear this in mind if a speed change will be made as part of the normal program execution.

(3) Adjusting Gain and Offset values

(a) When buffer memory BFM \#20 is activated by setting it to K1, all settings within the analog special function block are reset to their default settings. This is a very quick method to erase any undesired gain and offse adjustments.
(b) If (b1, b0) of BFM \#21 is set to $(1,0)$, gain and offset adjustments are prohibited to prevent inadvertent changes by the operator. In order to adjust the gain and offset values, bits (b1, b0) must be set to (0,1). The default is $(0,1)$.
(c) Gain and offset values of BFM \#23 and \#24 are sent to non-volatile memory gain and offset registers of the specified input channels. Input channels to be adjusted are specified by the appropriate G-O (gain-offset) bits of BFM \#22
Example: If bits G1 and O1 are set to 1 , input channel 1 will be adjusted when BFM \#22 is written to by a TO instruction.
(d) Channels can be adjusted individually or together with the same gain and offset values.
(e) Gain and offset values in BFM \#23 \#24 are in units of $m V$ or $\mu \mathrm{A}$. Due to the resolution of the unit the actual response will be in steps of 5 mV or $20 \mu \mathrm{~A}$.

(4) Status Information BFM \#29

Bit devices of BFM \#29	ON	OFF
b0 : Error	When any of b1 to b4 is ON. If any of b2 to b4 is ON, A/D conversion of all the channels is stopped	No error
b1: Offset / gain error	Offset/Gain data in EEPROM is corrupted or adjustment error.	Offset/Gain data normal
b2 : Power source abnormality	24V DC power supply failure	Power supply normal
b3 : Hardware error	A/D converter or other hardware failure	Hardware Normal
b10 : Digital range error	Digital output value is less than -2048 or more than +2047	Digital output value is normal.
b11: Averaging error	Number of averaging samples is 4097 or more or 0 or less (default of 8 will be used)	Averaging is normal. (between 1 and 4096)
b12: Offset / gain adjust prohibit	Prohibit-(b1, b0) of BFM \#21 is set to (1, 0)	Permit-(b1, b0) of BFM \#21 is set to (0,1)

NOTE: b4 to b7, b9 and b13 to b15 are undefined.

(5) Identification Code BFM \#30

The identification (or ID) code number for a Special Function Block is read using the FROM command.
This number for the FX2N-4AD unit is K2010.
The user's program in the PC can use this facility in the program to identify the special function block before commencing data transfer from and to the special function block.

CAUTION

- Values of BFM \#0, \#23 and \#24 are copied to EEPROM memory of the FX 2 N-4AD. BFM \#21 and BFM \#22 are only copied when data is written to the gain/offset command buffer BFM \#22. Also, BFM \#20 causes writing to the EEPROM memory. The EEPROM has a life of about 10,000 cycles (changes), so do not use programs which frequently change these BFMs.
- Because of the time needed to write to the EEPROM memory, a delay of 300 ms is required between instructions that cause a write to the EEPROM.
Therefore, a delay timer should be used before writing to the EEPROM a second time.

DEFINING GAIN AND OFFSET

Gain

Offset

Gain determines the angle or slope of the calibration line, identified at a digital value of 1000 .
(a) Small gain Large steps in digital readings
(b) Zero gain default : 5 V or 20 mA
(c) Large gain Small steps in digital readings

Offset is the 'Position' of the calibrated line, identified at a digital value of 0 .
(d) Negative offset
(e) Zero offset default : 0 V or 4 mA
(f) Positive offset

Offset and gain can be set independently or together. Reasonable offset ranges are -5 to +5 V or -20 mA to 20 mA , and gain values 1 V to 15 V or 4 mA to 32 mA . Gain and offset can be adjusted by software in the FX2N main unit (see program example 2)

- Bit device's b1, b2 of the gain/offset BFM \#21 should be set to 0,1 to allow adjustment.
- Once adjustment is complete these bit devices should be set to 1,0 to prohibit any further changes.
- Channel initialization (BFM \#0) should be set to the nearest range, i. e. voltage/current etc.

In the following example channels CH 1 and CH 2 are used as voltage inputs. The FX2N-4AD block is connected at the position of special function block No.0. Averaging is set at 4 and data registers D0 and D1 of the PC receive the averaged digital data.

M8002 $\quad\left[\begin{array}{lllll}\text { TO } \\ \text { K0 }\end{array}\right.$					
initial [K \quad]					
$\left[\begin{array}{llll} \text { CMP } & \text { K2010 } & \text { D4 } & \text { M0 } \end{array}\right]$					
M1 [TOP K0 K0 H3300					
\square TOP K0 K0 H3300 K1 」					
$\left.\begin{array}{\|llllll}\text { TOP } & \text { K0 } & \text { K1 } & \text { K4 } & \text { K2 }\end{array}\right]$					
[FROM K0 K29 K4M10 K1 $]$ [

The ID code for the special function block at position " 0 " is read from BFM \#30 of that block and stored at D4 in the main unit. This is compared to check the block is a FX2N-4AD, if OK M1 is turned ON. These two program steps are not strictly needed to perform an analog read. They are however a useful check and are recommended as good practice.
The analog input channels $(\mathrm{CH} 1, \mathrm{CH} 2)$ are setup by writing H3300 to BFM \#0 of the FX2N-4AD.

The number of averaged samples for CH 1 and CH 2 is set to 4 by writing 4 to BFM \#1 and \#2 respectively.

The operational status of the FX2N-4AD is read from BFM \#29 and output as bit devices at the FX2N main unit.

If there are no errors in the operation of the $\mathrm{FX}_{2 \mathrm{~N}}-4 \mathrm{AD}$, then the averaged data BFM's are read.
In the case of this example BFM \#5 and \#6 are read into the FX2N main unit and stored at D0 and D1. These devices contain the averaged data for CH 1 and CH 2 respectively.

5.2 Using gain and offset in a program

The gain and offset of the FX2N-4AD can be adjusted using push-button switches on the input terminal of the PC. It can also be adjusted using software settings sent from the PC.

Only the gain and offset values in the memory of the FX2n-4AD need be adjusted. A voltmeter or an ammeter for the analog input is not needed. A program for the PC will be needed however.
The following is an example of changing the offset value on input channel CH 1 to OV and the gain value to 2.5 V .
The FX ${ }_{2 N}-4 A D$ block is in the position of block No. 0 (i.e. closest to the FX 2 N main unit).
Example: Adjusting gain/offset via software settings

Adjustment start.
(H0000) \rightarrow BFM \#0 (initialize input channels) Enter the instructions on the left and RUN the PC.
(K1) \rightarrow BFM \#21
BFM \#21 (gain/offset adjust prohibit) must be set to permit with $(\mathrm{b} 1, \mathrm{~b} 0)=(0,1)$.
(KO) \rightarrow BFM \#22 (offset/gain adjust)
Reset adjust bits.
(K0) \rightarrow BFM \#23 (offset)
(K2500) \rightarrow BFM \#24 (gain)
(H0003) \rightarrow BFM \#22 (offset/gain adjust)
$3=0011$ i.e. $\quad \mathrm{O}=1, \quad \mathrm{G} 1=1$.
Therefore channel 1 is adjusted.

Adjustment end
(K2) \rightarrow BFM \#21
BFM \#21 gain/offset adjust prohibit.

6.1 Preliminary checks

I. Check whether the input wiring and/or extension cables are properly connected on $\mathrm{FX}_{2 \mathrm{~N}}-4 \mathrm{AD}$ analog special function block
II. Check that the $\mathrm{FX}_{2 \mathrm{~N}}$ system configuration rules have not been broken, i.e. the number of special function blocks does not exceed 8 and the total system I/O is equal or less than 256 I/O
III. Ensure that the correct operating range has been selected for the application.
V. Check that there is no power overload on either the 5 V or 24 V power sources, remember the loading on a FX2N main unit or a powered extension unit varies according to the number of extension blocks or special function blocks connected.
V. Put the $\mathrm{FX}_{2 \mathrm{~N}}$ main unit into RUN.

6.2 Error checking

If the FX2n-4AD special function block does not seem to operate normally, check the following items.

- Check the status of the POWER LED.

Lit : The extension cable is properly connected.
Otherwise : Check the connection of the extension cable.

- Check the external wiring.
- Check the status fo the "24V" LED (top right corner of the FX2N-4AD).

Lit : FX2N-4AD is OK, 24V DC power source is OK.
Otherwise : Possible 24VDC power failure, if OK possible FX2N-4AD failure.

- Check the status fo the "A/D" LED (top right corner of the FX $2 \mathrm{~N}-4 \mathrm{AD}$).

Lit
: A/D conversion is proceeding normally.
Otherwise : Check buffer memory \#29 (error status). If any bits (b2 and b3) are ON, then this is why the A / D LED is OFF.

Guidelines for the safety of the user and protection of the FX2N-4AD special function block

- This manual has been written to be used by trained and competent personnel. This is defined by the European directives for machinery, low voltage and EMC
- If in doubt at any stage during the installation of the FX2N-24AD always consult a professional electrical engineer who is qualified and trained to the local and national standards. If in doubt about the operation or use of the FX2N-4AD please consult the nearest Mitsubishi Electric distributor.
- Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.
- All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.

\therefore MITSUBISHI

$\boldsymbol{E X}_{2 \mathrm{~N}}$

FX2N-4AD SPECIAL FUNCTION BLOCK

 USER'S GUIDEThis manual contains text, diagrams and explanations which will guide the reader in the correct installation and

1 INTRODUCTION

- The FX2N-AAD analog special function block has four input channels. The input channels receive analog signals
and convert them into a digital value. . This is called an $A D$ conversion. The F KX2v-4AD has maximum resolution of and con
12 bits.
- The selection of voltage or current based inputoutput is by user wiring. Analog ranges of -10 to $10 \mathrm{~V} D$ (resolution

5 mV), and/or 4 to 20 mA , -20 to 20 mA (resolution: $20 \mu \mathrm{~A}$) may be selected.

- Data transter between the $\mathrm{FX}_{2 \text { N-4 }}$ AD and the $\mathrm{FX}_{2 \mathrm{~N}}$ main unit is by buffer memory exchange. There are 32 buffer
memories (each of 16 bits) in the $F X_{2 N}-4 \mathrm{AD}$.

1.1 EXTERNAL DIMENSIONS

(1) The analog inputi is received through a twisted pair
shielded cable. This cable should be wired seporate shielded cable. This cable should be wired separately
from powerlines or any other lines which may induce
electrical noise. electrical noise.
(2) If a voltage ripple occurs during input, or there is
electrically induced
隹 electrically induced noise on the external
smoothing capacito of 0.1 to $0.47 \mathrm{FF}, 25 \mathrm{~V}$.
(3) If you are using current input, connect the $\mathrm{V}+$ and $\mathrm{I}+$
terminals to each other.
(4) It there is excessive electrical noise, connect the FG frame
ground terminal with the grounded terminal on the ground termii
FX2 2 -4AD.
(5) Connect the ground terminal on the FX 2 2s-4AD
grounded termit with the grounded terminal on the main unit. Use clas

BF	Channel initialization Defautt = H0000	
\#0		
**	Channel 1	Contains the number of samples (1 to T096) to be used for an averaged result speed operation can be selected with a value of 1 .
**2	Channel 2	
**3	Channel 3	
**4	Channel 4	
\#5	Channel 1	These buffer memories contain the averaged input values for the number ofsamples entered for the channel in buffer memories \#1 to \#4 respectively.
\#6	Channel 2	
\#7	Channel 3	
\#8	Channel 4	
\#9	Channel 1	These buffer memories contain the present value currently being read by each input channel.
\#10	Channel 2	
\#11	Channel 3	
\#12	Channel 4	
\#13-114	Reserved	
	Selection of A / D conversion speed see note 2	When set to 0 , a normal speed is selec of $15 \mathrm{~ms} / \mathrm{ch}$ (defautt)
\#15		When set to 1 1, a high speed is selected of $\mathrm{mm} / \mathrm{ch}$

In buffer memory locations (BFMS)
marked with an marked with an yoctocations datan (Be witten
from the PC using the TO command. For buffer memories (BFMS) without
mark, datat can be read to the $P C$ using mark, data can be erea.
the FROM command.

Before reading from the analog specia function block, ensure these settings
have beeen sent to the analog special function block. Otherwise, the previous
values held in the analog block will be
ussed. values
used.

The buffer memory also gives a faciity
to adjust offset and gain by software. Offset (intercept): The analog input
value when the digital output becomes 0 . Gain (slope): The analog input value
when the digital output becomes +1000 .

Analog Inputs continued

NOTE: Preset ranges are selected by an appropiate setting in buffer memory of the analog block.
Current Voltage input selection must match the correct input terminal connections.

Miscellaneous

(1) Channel Selection

Channel initialization is made by a 4 character HEX number HOOOO in butfer memory BFM $\# 0$.
The least significant characier controls channel 1 and the 4 character controls channel 4 .
Setting of each character is as follows:
$\begin{array}{ll}\mathrm{O}=0: \text { Preset range }(-10 \mathrm{~V} \text { to }+10 \mathrm{~V}) \\ \mathrm{O}=1: \text { Preset range }(+4 \mathrm{~mA} \mathrm{to}+20 \mathrm{~mA}) & \mathrm{O}=2: \text { Preset range (}-20 \mathrm{~mA} \mathrm{to}+20 \mathrm{~mA}) \\ \mathrm{O}=3: \text { Channel } \mathrm{OFF}\end{array}$
Example: H3310
$\mathrm{CH1}:$ Preset range $(-10 \mathrm{~V}$ to $+10 \mathrm{~V})$
CH 2 : Preset range $(+4 \mathrm{~mA}$ to $+2 \mathrm{~mA})$
CH2: Preset range + +4mA
CH3, $\mathrm{CH} 4:$ Channel OFF

(2) Analog to Digital Conversion Speed Change

By writing 0 or 1 into $\mathrm{BFM} \# 15$ of the $\mathrm{FX} 2 \mathrm{~N}-4 \mathrm{AD}$, the speed at which $A D$ conversion is performed can be changed.
However the following points should bented
However the e tolowing points should be noted:
To maintain a high speed conversion rate, use the FROM/TO commands as seldom as possible,
NOTES: When a conversion speed change is made, BFM \#1-\#4 are set to their default values immediately atie the change. This is regardless of the values they
made as part of the normal program execution.

(3) Adjusting Gain and Offset values

(a) When buffer memory BFM \#20 is activated by setting it too 1 1, all settings within the analog special function
block are reset to their defautit settings. This is a very quick method to erase any undesired gain and oftset
adiustent

If (b1, bo) of BFM \#\#1 is set to (1,0), gain and offset adiustments are pronibited to prevent inadvertent changes by the operator. In order to adjust the gain and offsee values, bits (60, bo) must be set to $(0,1)$. The default is
(0,1).
(c) Gain and offset values of BFM $\# 23$ and $\# 24$ are sent to non-volatilie memory gain and offset registers of the
specified input channels. Input channels to be adjusted are specified by the appropriate G G-O (gain-offset) bits Speciride input
of $B F M$ \#22
Exim
Example: If bits G 1 and O are set to 1 , input channel 1 will be adjusted when BFM \#22 is written to by a TO
Istruction.
(d) Channels can be adiusted individually or together with the same gain and offset values.
(e) Gain and offset values in BFM $\# 23$ \# 24 are in units of $m V$ or μ A. Due to the resolution of the unit the actual
response will be in steps of 5 mV or $20 \mu \mathrm{~A}$.

Bit devices of BFM \#29	ON	OFF
b0 : Error	When any of b1 to b4 is ON. If any of b2 to b4 is $\mathrm{ON}, \mathrm{A} / \mathrm{D}$ conversion of all the channels is stopped	No error
b1 : Offset/ gain error	Offset/Gain data in EEPROM is corrupted or adjustment error.	OffsetGain data normal
b2 : Power source abnormality	24 VCC power supply failure	Power supply normal
b3: Hardware error	$A D$ converter or other hardware failure	Hardware Normal
b10 : Digital range error	Digital output value is less than -2048 or more than +2047	Digital output value is normal.
b11: Averaging error	Number of averaging samples is 4097 or more or 0 or less (default of 8 will be used)	Averaging is normal. (between 1 and 4096)
b12: Offset/ gain adjust prohibit	Prohibit-(b1, b0) of BFM \#21 is set to (1,0)	Permit-(b1, b0) of BFM \#21 is set to (0,1)

b12: Offset / gain adjust prohibit Prohibit-(b1, b0) of BFM \#21 is set to (1,0) Permit-(b1, b0) of BFM \#21 is set to (0,1) NOTE: $b 4$ to $b 7$, b9 and $b 13$ to $b 15$ are undefined

(5) Identification Code BFM \#30

The identification (or ID) code number for a Special Function Block is read using the FROM command. This number for the FX2N-4AD unit is K2010,
The user's program in the PC can use this faciity in the program to identify the special function block before CAUTION

Values of BFM \#0, \#23 and \#24 are copied to EEPROM memory of the FXXN-4AD. BFM \#21 and BFM \#22
are only copied when data is written to the gain oftset command butfer BFM \#22. Also, BFM \#20 causes
 writing to the EEPROM memory. The EEPROM has
use programs which frequently change these BFMs.
Because of the time needed to write to the EEPROM memory, a delay of 300 ms is required between instructions that cause a write to the EEPROM.
Therefore, a delay timer should be used before writing to the EEPROM a second time

5

5.1 Basic Program

EXAMPLE PROGRAM
nosition of special function block No . 0 . Averagaing is set at 4 and data ravegisters DO and D 1 of the PC receive the position of special func
averaged ligital data.

6

Check whether the input wiring and/or extension cables are properly connected on $\mathrm{FX} 2 \mathrm{~N}^{\mathrm{N}}-\mathrm{AD}$ analog special function
II. Check that the FX_{2} N system configuration rules have not been broken, i.e. the number of special function blocks Ensure that the correct operating range has been selected for the application.
IV. Check that there is no power overload on either the 5 V or 24 V power sources, remember the loading on a FX 2 N main unit or a pow
V. Put the FXern main unit into RUN.

6. 2 Error checking

If the FX2v-4AD special function block does not seem to operate normally, check the following items.

- Check the status of the POWER LED.

Lit
Lit herwise
Othas ote extension cable is properly connected.
: Check the connection of the extension cable.

- Check the external wiring.
- Check the status fo the "24V" LED (top right corner of the FX2N-4AD)

Lit
Otherwise
:
:
FXXV-4AD is
Possible $24 V D C, ~ 24 V ~ D C ~ p o w e r ~ f a i l u r e, ~ i f ~ s o u r c e ~ i s ~$
OK

- Otherwise : Possible $24 V D C$ power failure if OK possible $F X 2 N-4 A D$

Lit
Otherwise
\vdots
AD conversion is proceeding normally.
Check buffer memory \#\#9 (error status). If any bits (b2 and b 3) are ON , then this is why
the AD LED is OFF

5.2 Using gain and offset in a program

The gain and offses of the $\mathrm{FX} \times 2$ v-4AD can be adiusted using push-button switches on the input terminal of the PC. It can
also be adjusted using software settings sent trom the PC. Only the gain and offset values in the memory of the FXXV-4AD need be adiusted. A voltmeter or an ammeter for the
analog input is not needed. A program for the PC will be needed however. The following is an example of changing the offset value on input channel CH 1 to 0 V and the gain value to 2.5 V . The $\mathrm{FX} 2 \mathrm{zv}-4 \mathrm{AD}$ block is in the position of block No. (i.e. closest to the FX 2 N main unit).
Example: Adjusting gain/offset via software settings

Guidelines for the safety of the user and protection of the FX2v-4AD special function block

- This manual has been written to be used by trained and competent personnel. This is defined by
- If in doubt at any stage during the installation of the FX2N-24AD always consult a professional about the operation or use of the $\mathrm{FX} 2 \mathrm{~N}-4 \mathrm{AD}$ please consult the nearest Mitsubishi Electric distributor.
- Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential All examples and diagrams shown in this manuual are intended only as an aid to understanding
the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual the eext not to guarantee operation. Mitisubishi Electric will accept no responsibility for actual

```
Manual number : JY992D65201 Manual revision :
Date : JUNE 1997
```

A. MITSUBISH ELECTRIC CORPORATION

